Estimate Parameters in Single-cell Gene Expression Generalized Trend Model
Source:R/scGTM.R
scGTM.RdThe model fits a gene's expression counts and its normalized pseudotime into one of the four marginal distributions. This function estimates corresponding parameters and confidence intervals in the corresponding marginal distributions.
Usage
scGTM(
t,
y1,
gene_name = NULL,
marginal = "ZIP",
iter_num = 50,
seed = 123,
hill_only,
k_design = NULL,
Design_X = NULL
)Arguments
- t
A numeric vector of the input normalized pseudotime data of a given gene, length equals the numbers of cells
- y1
A vector of integers, representing the input expression counts of a given gene, length equals the numbers of cells
- gene_name
A single string vector, indicates the gene name used in the model, default=NULL
- marginal
A string of the distribution name. One of
Poisson,ZIP,NB,ZINB, andGaussian. default=ZIP- iter_num
A single integer vector, indicates max number of iteration used in the PSO algorithm that estimates model parameters
- seed
A numeric variable of the random seed, affecting parametric fitting of the marginal distribution. default=123
- hill_only
A logical vector, determine whether the curve is hill only or not.
- k_design
A single positive integer, indicates the number of variables in Design matrix, default=NULL
- Design_X
A numerical matrix whose number of rows equals the length of y1, number of columns equals k_design, default=NULL
Examples
y1<-floor(runif(100, min = 0, max = 20))
t<-runif(100, min = 0, max = 1)
marginal<-"ZIP"
scGTM(t=t, y1=y1, marginal=marginal)
#> The need of transformation: FALSE
#> We are estimating gene with marginal ZIP .
#> Error in scGTM(t = t, y1 = y1, marginal = marginal): argument "hill_only" is missing, with no default
data("df")
t<-df$Time
marginal<-"ZIP"
y1<-df$Gene11
scGTM(t=t, y1=y1, marginal=marginal)
#> The need of transformation: TRUE
#> We are estimating gene with marginal ZIP .
#> Error in scGTM(t = t, y1 = y1, marginal = marginal): argument "hill_only" is missing, with no default
data("df")
t<-df$Time
marginal<-"Gaussian"
y1<-df$Gene1
scGTM(t=t, y1=y1, marginal=marginal)
#> The need of transformation: FALSE
#> We are estimating gene with marginal Gaussian .
#> Error in scGTM(t = t, y1 = y1, marginal = marginal): argument "hill_only" is missing, with no default